首页> 外文OA文献 >A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure
【2h】

A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure

机译:混合效果的可扩展且高效的协变量选择标准   具有未知随机效应结构的回归模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a new model selection criterion for mixed effects regressionmodels that is computable when the model is fitted with a two-step method, evenwhen the structure and the distribution of the random effects are unknown. Thecriterion is especially useful in the early stage of the model building processwhen one needs to decide which covariates should be included in a mixed effectsregression model but has no knowledge of the random effect structure. This isparticularly relevant in substantive fields where variable selection is guidedby information criteria rather than regularization. The calculation of thecriterion requires only the evaluation of cluster-level log-likelihoods anddoes not rely on heavy numerical integration. We provide theoretical andnumerical arguments to justify the method and we illustrate its usefulness byanalyzing data on a socio-economic study of young American Indians.
机译:我们为混合效应回归模型提出了一个新的模型选择准则,当该模型采用两步法拟合时,即使随机效应的结构和分布未知,也可以计算。当需要确定哪些协变量应包括在混合效应回归模型中但不了解随机效应结构时,该准则在模型构建过程的早期阶段特别有用。这在实质领域中尤其重要,在这些领域中,变量选择是由信息标准而非正则化指导的。该标准的计算仅需要评估群集级别的对数似然性,而无需依赖大量的数值积分。我们提供理论和数值论据来证明该方法的合理性,并通过分析对年轻的美洲印第安人进行的社会经济研究数据来说明其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号